ʀᴏᴀᴅ ₂ ʟᴜᴅᴍɪʟᴀ by ᴍɪᴢᴜ^₃ x ᴋᴜᴀɴғᴜᴡᴇɪᴍᴜ👽😈
₂₀₂₅₀₄₂₀ ᴛʀɪɢɢᴇʀ sʜᴀɴɢʜᴀɪ 不羁伏特加 ᴜɴᴄʜᴀɪɴᴇᴅ ᴠᴏʟᴛᴀɢᴇ﹢
ᴍᴏᴅᴜʟᴀʀ sʏɴᴛʜᴇsɪᴢᴇʀ x ᴀᴜᴅɪᴏᴠɪsᴜᴀʟ
ᴘᴇʀғᴏʀᴍᴀɴᴄᴇ sᴛᴀᴛᴇᴍᴇɴᴛ — ᴍɪᴢᴜ^³ x ᴋᴜᴀɴғᴜᴡᴇɪᴍᴜ
ᴏᴜʀ ᴅᴇʙᴜᴛ ᴀᴜᴅɪᴏᴠɪsᴜᴀʟ ᴘᴇʀғᴏʀᴍᴀɴᴄᴇ ᴅʀᴀᴡs ᴄᴏɴᴄᴇᴘᴛᴜᴀʟ ɪɴsᴘɪʀᴀᴛɪᴏɴ ғʀᴏᴍ ʟᴜᴅᴍɪʟᴀ﹐ ᴀ ᴄʜᴀʀᴀᴄᴛᴇʀ ɪɴ sᴏᴜᴛʜ ᴋᴏʀᴇᴀɴ sᴄɪ﹣ғɪ ᴀᴜᴛʜᴏʀ ᴋɪᴍ ᴄʜᴏ﹣ʏᴇᴏᴘ’s ɴᴏᴠᴇʟ ᴛʜᴇ sʏᴍʙɪᴏᴛɪᴄ ʜʏᴘᴏᴛʜᴇsɪs. ғʀᴀᴍᴇᴅ ᴀs ᴀ ᴊᴏᴜʀɴᴇʏ ɢᴜɪᴅᴇᴅ ʙʏ ᴘᴇᴅᴇsᴛʀɪᴀɴ ɴᴀᴠɪɢᴀᴛɪᴏɴ ᴛᴏᴡᴀʀᴅ ᴛʜᴇ ғɪᴄᴛɪᴏɴᴀʟ ᴘʟᴀɴᴇᴛ ʟᴜᴅᴍɪʟᴀ﹐ ᴛʜᴇ ᴘɪᴇᴄᴇ ᴍᴇʀɢᴇs ɴᴀʀʀᴀᴛɪᴠᴇ ғʀᴀɢᴍᴇɴᴛs ᴡɪᴛʜ ɪᴍᴘʀᴏᴠɪsᴇᴅ sʏɴᴛʜᴇsɪs ᴀɴᴅ ʀᴇᴀʟ﹣ᴛɪᴍᴇ ᴠɪsᴜᴀʟs.
ᴍɪᴢᴜ^³ ʟᴇᴅ ᴛʜᴇ sᴏɴɪᴄ ɴᴀʀʀᴀᴛɪᴠᴇ ᴜsɪɴɢ ʜᴇʀ ᴍᴏᴅᴜʟᴀʀ sʏɴᴛʜᴇsɪᴢᴇʀ﹐ ғᴏʀᴍɪɴɢ ᴛʜᴇ ᴄᴏʀᴇ ᴏғ ᴛʜᴇ ᴘᴇʀғᴏʀᴍᴀɴᴄᴇ’s ʀʜʏᴛʜᴍ ᴀɴᴅ ᴛᴏɴᴇ. ɪ ᴡᴀs ʀᴇsᴘᴏɴsɪʙʟᴇ ғᴏʀ ᴛʜᴇ ᴠɪsᴜᴀʟ sʏsᴛᴇᴍ ᴀɴᴅ ᴄᴏɴᴛʀɪʙᴜᴛᴇᴅ ᴀᴅᴅɪᴛɪᴏɴᴀʟ sʏɴᴛʜᴇᴛɪᴄ ᴀᴜᴅɪᴏ ᴇʟᴇᴍᴇɴᴛs ɢᴇɴᴇʀᴀᴛᴇᴅ ᴅɪʀᴇᴄᴛʟʏ ɪɴ ᴛᴏᴜᴄʜᴅᴇsɪɢɴᴇʀ. ғᴏʀ ᴛʜᴇ ғɪɴᴀʟ sᴇɢᴍᴇɴᴛ﹐ ᴡᴇ ᴊᴏɪɴᴇᴅ ғᴏʀᴄᴇs ɪɴ ᴀ ᴄᴏʟʟᴀʙᴏʀᴀᴛɪᴠᴇ ɴᴏɪsᴇ ɪᴍᴘʀᴏᴠɪsᴀᴛɪᴏɴ.
ᴛʜᴇ ᴠɪsᴜᴀʟs ᴡᴇʀᴇ ᴄʀᴀғᴛᴇᴅ ᴛʜʀᴏᴜɢʜ ᴀ ᴄᴜsᴛᴏᴍ﹣ʙᴜɪʟᴛ﹐ ʀᴇᴀʟ﹣ᴛɪᴍᴇ ɪᴍᴘʀᴏᴠɪsᴀᴛɪᴏɴ sʏsᴛᴇᴍ ᴄᴏᴅᴇᴅ ɪɴ ᴛᴏᴜᴄʜᴅᴇsɪɢɴᴇʀ. ᴀ sɪɢɴɪғɪᴄᴀɴᴛ ғᴏᴄᴜs ᴡᴀs ᴘʟᴀᴄᴇᴅ ᴏɴ ᴍᴀᴘᴘɪɴɢ ᴍɪᴅɪ ᴄᴏɴᴛʀᴏʟʟᴇʀ ɪɴᴘᴜᴛ ᴛᴏ ᴘʀᴇᴄɪsᴇ ᴠɪsᴜᴀʟ ᴘᴀʀᴀᴍᴇᴛᴇʀs—ᴇsᴘᴇᴄɪᴀʟʟʏ ᴡᴀᴠᴇғᴏʀᴍ ᴍᴏᴅᴜʟᴀᴛɪᴏɴ ᴠɪᴀ ʀᴀᴍᴘ ﹢ ʟɪɴᴇ sᴏᴘs. sɪɴᴄᴇ ᴍʏ ɴᴏɪsᴇ ᴄᴏᴍᴘᴏɴᴇɴᴛs ᴡᴇʀᴇ ᴀʟsᴏ ᴡʀɪᴛᴛᴇɴ ɴᴀᴛɪᴠᴇʟʏ ɪɴ ᴛᴅ﹐ ɪ ᴄᴏᴜʟᴅ ᴅɪʀᴇᴄᴛʟʏ ᴠɪsᴜᴀʟɪᴢᴇ ᴀᴜᴅɪᴏ ᴡᴀᴠᴇғᴏʀᴍs ᴛʜʀᴏᴜɢʜ ᴛʜᴇ ʟɪɴᴇ sᴏᴘ﹐ ʙʟᴜʀʀɪɴɢ ᴛʜᴇ ʙᴏᴜɴᴅᴀʀʏ ʙᴇᴛᴡᴇᴇɴ sᴏᴜɴᴅ ᴀɴᴅ ɪᴍᴀɢᴇ.
ᴅᴜᴇ ᴛᴏ ᴛʜᴇ ʟᴀʏᴇʀᴇᴅ ɴᴀʀʀᴀᴛɪᴠᴇ ᴀɴᴅ ᴜsᴇ ᴏғ sᴀᴍᴘʟᴇᴅ ᴍᴀᴛᴇʀɪᴀʟ﹐ ɪ ᴅᴇsɪɢɴᴇᴅ ᴛᴡᴏ ᴅɪsᴛɪɴᴄᴛ sᴇᴛs ᴏғ ᴍɪᴅɪ ᴍᴀᴘᴘɪɴɢs﹕ ᴏɴᴇ ᴄᴏɴᴛʀᴏʟʟɪɴɢ ᴡᴀᴠᴇғᴏʀᴍ﹐ ғʀᴇϙᴜᴇɴᴄʏ﹐ ᴀɴᴅ sᴘᴇᴄᴛʀᴀʟ sʜɪғᴛs ɪɴ ᴛʜᴇ ᴛᴅ sʏɴᴛʜ ᴍᴏᴅᴜʟᴇ; ᴛʜᴇ ᴏᴛʜᴇʀ ᴅᴇᴅɪᴄᴀᴛᴇᴅ ᴛᴏ ᴍᴀsᴛᴇʀ ᴠɪsᴜᴀʟ ᴀᴅᴊᴜsᴛᴍᴇɴᴛs—ᴄᴏɴᴛʀᴏʟʟɪɴɢ ᴄᴀᴍᴇʀᴀ ʙʟᴜʀ﹐ ғʟᴀsʜ ɪɴᴛᴇɴsɪᴛʏ﹐ ᴀɴᴅ ᴏᴠᴇʀᴀʟʟ sᴘᴀᴛɪᴀʟ ᴇғғᴇᴄᴛs.
ᴛʜɪs ᴡᴏʀᴋ ɪs ʙᴏᴛʜ ᴀ ᴛᴇᴄʜɴɪᴄᴀʟ ᴇxᴘᴇʀɪᴍᴇɴᴛ ᴀɴᴅ ᴀ ᴄᴏɴᴄᴇᴘᴛᴜᴀʟ ᴍᴇᴅɪᴛᴀᴛɪᴏɴ ᴏɴ ᴀʟɪᴇɴ sʏᴍʙɪᴏsɪs﹐ ᴍᴇᴍᴏʀʏ ғʀᴀɢᴍᴇɴᴛs﹐ ᴀɴᴅ ᴍᴀᴄʜɪɴᴇ ɪᴍᴘʀᴏᴠɪsᴀᴛɪᴏɴ.